Search results for "and optics"

showing 10 items of 4468 documents

Work fluctuations in bosonic Josephson junctions

2016

We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that…

---Josephson effectPopulationFOS: Physical sciences01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasFock spacesymbols.namesakequant-phUltracold atomQuantum mechanics0103 physical sciences010306 general physicseducationPhysicsCondensed Matter::Quantum GasesQuantum Physicseducation.field_of_studyOptimal controlAtomic and Molecular Physics and OpticsQuantum Gases (cond-mat.quant-gas)symbolsProbability distributionCondensed Matter - Quantum GasesHamiltonian (quantum mechanics)Quantum Physics (quant-ph)cond-mat.quant-gas
researchProduct

Dynamical learning of a photonics quantum-state engineering process

2021

Abstract. Experimental engineering of high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of the noisy experimental apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adaptive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determine…

/dk/atira/pure/subjectarea/asjc/2200/2204/dk/atira/pure/subjectarea/asjc/2500/2504Biomedical EngineeringphotonicsFOS: Physical sciencesquantum mechanicSettore FIS/03 - Fisica Della MateriaQuantum walkquantum informationquantum state engineeringqunatum informationblack-box optimizationQuantum Physicsquantum information; orbital angular momentum; black-box optimization; quantum state engineering; photonics/dk/atira/pure/subjectarea/asjc/3100/3107Orbital angular momentumState engineeringGeneral MedicineAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAlgorithmmachine learningorbital angular momentumBlack-box optimizationQuantum Physics (quant-ph)Optics (physics.optics)Physics - OpticsAdvanced Photonics
researchProduct

Discrete spectral incoherent solitons in nonlinear media with noninstantaneous response

2011

International audience; We show theoretically that nonlinear optical media characterized by a finite response time may support the existence of discrete spectral incoherent solitons. The structure of the soliton consists of three incoherent spectral bands that propagate in frequency space toward the low-frequency components in a discrete fashion and with a constant velocity. Discrete spectral incoherent solitons do not exhibit a confinement in the space-time domain, but exclusively in the frequency domain. The kinetic theory describes in detail all the essential properties of discrete spectral incoherent solitons: A quantitative agreement has been obtained between simulations of the kinetic…

01 natural sciencesoptical instabilitiesSchrödinger equation010309 opticssymbols.namesakeand lossesQuantum mechanics0103 physical sciencesDispersion (optics)Dynamics of nonlinear optical systemsOptical solitonssolitons010306 general physicsPropagationNonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]and optical spatio-temporal dynamicsscatteringWave equationAtomic and Molecular Physics and OpticsSupercontinuumNonlinear systemFrequency domainsymbolsoptical chaos and complexitySolitonnonlinear guided waves
researchProduct

Coloration mechanism of electrochromic Na x WO3 thin films

2019

International audience; The coloration mechanism of tungsten trioxide (WO3) upon insertion of alkali ions is still under debate after several decades of research. This Letter provides new insights into the reversible insertion and coloration mechanisms of Na+ ions in WO3 thin films sputter-deposited on ITO/glass substrates. A unique model based on a constrained spline approach was developed and applied to draw out ε1+iε2 from spectroscopic ellipsometry data from 0.6 to 4.8 eV whatever the state of the electrochromic active layer, i.e. as-deposited, colored or bleached. It is shown that electrochemically intercalated sodium-tungsten trioxide, NaxWO3 (x=0.1, 0.2, 0.35), exhibits an absorption…

010302 applied physicsAlkali ions[PHYS]Physics [physics]Materials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesTungsten trioxideAtomic and Molecular Physics and OpticsActive layerIonchemistry.chemical_compoundOpticschemistryElectrochromismAbsorption band0103 physical sciences[CHIM]Chemical SciencesThin film0210 nano-technologybusinessTrioxide
researchProduct

Low energy nano diffraction (LEND) – A versatile diffraction technique in SEM

2019

Abstract Electron diffraction is a powerful characterization method that is used across different fields and in different instruments. In particular, the power of transmission electron microscopy (TEM) largely relies on the capability to switch between imaging and diffraction mode enabling identification of crystalline phases and in-depth studies of crystal defects, to name only examples. In contrast, while diffraction techniques have found their way into the realm of scanning electron microscopy (SEM) in the form of electron backscatter diffraction and related techniques, on-axis transmission diffraction is still in its infancy. Here we present a simple but versatile setup that enables a ‘…

010302 applied physicsDiffractionMaterials scienceGrapheneScanning electron microscopebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionCharacterization (materials science)Electron diffractionlawTransmission electron microscopy0103 physical sciencesOptoelectronics0210 nano-technologybusinessInstrumentationElectron backscatter diffractionUltramicroscopy
researchProduct

Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement.

2020

Abstract Electron crystallography has focused in the last few years on the analyses of microcrystals, mainly organic compounds, triggered by recent publications on acquisition methods based on direct detection cameras and continuous stage tilting. However, the main capability of a transmission electron microscope is the access to features at the nanometre scale. In this context, a new acquisition method, called fast and automated diffraction tomography (Fast-ADT), has been developed in form of a general application in order to get the most of the diffraction space from a TEM. It consists of two subsequent tilt scans of the goniometric stage; one to obtain a crystal tracking file and a secon…

010302 applied physicsDiffractionMaterials scienceMicroscopeElectron crystallographybusiness.industryContext (language use)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionDiffraction tomographyOpticsElectron diffractionlawGoniometer0103 physical sciences0210 nano-technologybusinessInstrumentationPowder diffractionUltramicroscopy
researchProduct

Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes.

2018

Abstract A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on …

010302 applied physicsDiffractionMaterials sciencebusiness.industryDetector02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesDark field microscopyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionOpticsElectron diffractionProjectorlaw0103 physical sciencesPrecessionElectron microscope0210 nano-technologybusinessInstrumentationBeam (structure)Ultramicroscopy
researchProduct

Superparamagnetic recoverable flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic s…

2019

In the present research study, a simple method was developed for the synthesis of three-dimensional flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposites. The X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscope, vibrating sample magnetometer, dynamic laser scattering analyzer and UV–Vis diffuse reflection spectroscopy were employed for the characterization of structure, purity and morphology of the resultant samples. The degradation of indigo carmine as a model of organic dye pollutant is applied for photo-catalytic activity. The parameters which are affecting the efficiency of various parameters, such as;…

010302 applied physicsDiffractionNanocompositeMaterials scienceKineticsAnalytical chemistryElectronCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsflowerlike Fe3O4@Bi2O3 core-shell g-C3N4 superparamagnetic photocatalysischemistry.chemical_compoundIndigo carminechemistryTransmission electron microscopySettore CHIM/03 - Chimica Generale E Inorganica0103 physical sciencesSettore CHIM/07 - Fondamenti Chimici Delle TecnologieElectrical and Electronic EngineeringFourier transform infrared spectroscopySuperparamagnetism
researchProduct

Nonlinear optical response of bulk ZnO crystals with different content of intrinsic defects

2018

Abstract The nonlinear optical (NLO) properties of native defect-rich ZnO single crystals were studied in details within the excitation of the continuous wave (CW) and pulsed laser radiation at 532 nm (2.33 eV). Analysis of the experimental data of optical elastic scattering, Fourier transform infrared (FTIR), near infrared–visible–ultraviolet (NIR–Vis–UV) spectra recorded in reflection and absorption modes, and data of photoluminescence (PL) spectroscopy confirmed the contribution of both intrinsic defects and their clusters, being determined before by neutron diffraction and XRD analysis. It was shown that the high sensitivity of the NLO diagnostics via self-action of a laser beam is due …

010302 applied physicsElastic scatteringMaterials sciencePhotoluminescenceInfraredOrganic ChemistryNeutron diffraction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsAtomic and Molecular Physics and OpticsLight scatteringElectronic Optical and Magnetic MaterialsInorganic ChemistryWavelength0103 physical sciencesElectrical and Electronic EngineeringPhysical and Theoretical ChemistryFourier transform infrared spectroscopy0210 nano-technologySpectroscopySpectroscopyOptical Materials
researchProduct

Computational volumetric reconstruction of integral imaging with improved depth resolution considering continuously non-uniform shifting pixels

2018

Abstract In this paper, we propose a new computational volumetric reconstruction technique of three-dimensional (3D) integral imaging for depth resolution enhancement by using non-uniform and integer-valued shifting pixels. In a typical integral imaging system, 3D images can be recorded and visualized using a lenslet array. In previous studies, many computational reconstruction techniques such as computational volumetric reconstruction and pixel of elemental images rearrangement technique (PERT) have been reported. However, a computational volumetric reconstruction technique has low visual quality and depth resolution because low-resolution elemental images and uniformly distributed shiftin…

010302 applied physicsIntegral imagingPixelLenslet arrayComputer sciencebusiness.industryMechanical EngineeringResolution (electron density)ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONÒptica01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVolumetric reconstruction010309 opticsQuality (physics)0103 physical sciencesComputer visionArtificial intelligenceElectrical and Electronic EngineeringbusinessImatges Processament Tècniques digitalsComputingMethodologies_COMPUTERGRAPHICS
researchProduct